For Better Performance Please Use Chrome or Firefox Web Browser

Plant-available water and integral energy for Medicago sativa and Bromus tomentellus in texturally different soils

Archives of Agronomy and Soil Science, DOI: 10.1080/03650340.2015.1037295


Soil water availability is very crucial for pasture plants because their growth solely depends on the soil water storage. While plant-available water (PAW) is successfully related to plant growth, it is the energy required per unit mass of water, integrated over the PAW range, named the integral energy (EI) that determines how easily plants can take up water from the soil. The soil water retention function was integrated over the PAW range to calculate the EI. PAW and EI were determined for Medicago sativa (alfalfa, a legume) and Bromus tomentellus (a grass) species in five texturally different soils of semi-steppe rangeland in central Zagros, western Iran. The PAW was calculated as the difference between field capacity and permanent wilting point (nominal h of 15,000 hPa or actual h obtained from PWP value determined in greenhouse). EI values were calculated for the nominal and actual PAW values. M. sativa PAW and EI values were more than those from B. tomentellus, indicating that M. sativa was able to tolerate higher soil matric suctions at similar conditions. Results showed predicting EI only from basic soil properties is not accurate. PAW and EI are dependent on plant species and soil type interactions, and environmental compatibility.
Keywords: soil water availability; soil water retention curve; field capacity; permanent wilting point

Journal Papers

ارتقاء امنیت وب با وف بومی